
Exploring complex networks through random walks

Luciano da Fontoura Costa* and Gonzalo Travieso†

Instituto de Física de São Carlos, Universidade de São Paulo, Caixa Postal 369, São Carlos, Sao Paulo, 13560-970, Brazil
�Received 15 July 2006; revised manuscript received 9 November 2006; published 11 January 2007�

Most real complex networks—such as protein interactions, social contacts, and the Internet—are only
partially known and available to us. While the process of exploring such networks in many cases resembles a
random walk, it becomes a key issue to investigate and characterize how effectively the nodes and edges of
such networks can be covered by different strategies. At the same time, it is critically important to infer how
well can topological measurements such as the average node degree and average clustering coefficient be
estimated during such network explorations. The present article addresses these problems by considering
random, Barabási-Albert �BA�, and geographical network models with varying connectivity explored by three
types of random walks: traditional, preferential to untracked edges, and preferential to unvisited nodes. A series
of relevant results are obtained, including the fact that networks of the three studied models with the same size
and average node degree allow similar node and edge coverage efficiency, the identification of linear scaling
with the size of the network of the random walk step at which a given percentage of the nodes/edges is
covered, and the critical result that the estimation of the averaged node degree and clustering coefficient by
random walks on BA networks often leads to heavily biased results. Many are the theoretical and practical
implications of such results.
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I. INTRODUCTION

Despite its relatively young age, the area of investigation
going by the name of complex networks �1–5� has estab-
lished itself as a worthy relative—or perhaps inheritor—of
graph theory and statistical physics. Such a success has been
a direct consequence of the emphasis which has been given
to structured interconnectivity, statistical formulations, inter-
est in applications and, as in more recent developments �e.g.,
�3,4��, the all-important paradigm relating structure and dy-
namics. Yet, very frequently, the analyzed networks are as-
sumed to be completely known and accessible to us. Indeed,
while so many important problems involving completely de-
scribed networks—such as community finding �e.g., �6��—
remain as challenges in this area, why should one bother to
consider incompletely specified networks?

Perhaps a good way to start making sense of this question
is by considering our future. To what restaurant are we going
tomorrow? What article will we read next? Which mirrors
will ever see our faces again? Would not each such situation
be describable as a node, while the flow of decisions among
the possibilities would define a most extraordinary personal
random walking a most complex network? Although such a
dynamic network is undoubtedly out there �or in here�, we
are allowed to explore just a small portion of it at a time.
And, with basis on whatever knowledge we can draw from
such a small sample, we have to decide about critical next
steps. However, the situations involving incomplete or
sampled networks extend much further than this extreme ex-
ample. For instance, the steps along any game or maze is but
a sample of a much larger network of possibilities. Explora-
tions of land, sea, and space also correspond to small sam-

plings of a universe of possibilities, not to mention more
“classical” large networks such as those obtained for protein
interaction, social contacts, and the Internet. Last but not
least, the own exploratory activities of science are but a most
complex random walk on the intricate and infinite web of
knowledge �7�. In all such cases, the success of the whole
enterprise is critically connected to the quality and accuracy
of the information we can infer about the properties of the
whole network while judging from just a small sample of it.
Little doubt can be raised about the importance of such a
problem, which has received relatively little attention.
Among the previously reported related works we have the
investigation of random walks/diffusion in scale free net-
works with quenched disorder �8�, the analysis of the effects
of sampling the World Wide Web �WWW� through crawlers
�9�, and the investigation of tracerouter probes for sampling
the Internet �10�. The problem of sampling networks has also
been addressed from the sociological point of view �see
�11–13��. The use of random walks for the self-organization
of network growth has been considered in �14�. The literature
about random walks in complex networks include �15–25�.
The subject of general sampled networks has also been cov-
ered in �26,27�. Some systematic investigations of random
walks as the means to sample complex networks have been
reported recently �12,28–30�. Reference �28� considered
three ways of sampling the networks �i.e., node, link, and
snowball sampling�, identified a bias in the estimation of
several measurements and suggested means to avoid such
problems.

The current paper is about incomplete and sampled net-
works and some related fundamental questions. We start with
the basic mathematical concepts, identifying some of the
most interesting related questions and perspectives, and pro-
ceed by illustrating what can be learned about random,
Barabási-Albert �BA�, and geographical networks while
sampling them locally in random fashion or through three
types of random walks—traditional �uniform decision prob-
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ability�, preferential to untracked edges, and preferential to
untracked nodes. Particularly, the choice of these three com-
plex networks models provide a reasonable diversity of con-
nectivities, varying from completely indiscriminate in the
case of the random models to the geographically structured
and strongly regular connections found in the geographical
model, with the Barabási-Albert networks representing struc-
tures involving hubs. In this way, the current investigation
can be understood as an extension of previous works �espe-
cially �12,28��, in light of the sampling schemes and con-
cepts of node/edge coverage suggested recently in �7�.

II. BASIC CONCEPTS AND SOME
FUNDAMENTAL ISSUES

An undirected �32� complex network �= �V ,E�, involving
a set of N nodes V and a set E of connections between such
nodes.

An incompletely specified complex network is henceforth
understood as any subnetwork G of � such that G��. In
this work we will restrict our attention to incomplete com-
plex networks defined by sets of nodes and adjacent edges
identified during random walks. Such networks can be rep-
resented as (�i1 ,A1� ; �i2 ,A2� , . . . , �iM ,AM�), where ip are
nodes sampled during the random walk through �, and Ap
are sets containing the respective list of adjacent nodes. Note
that necessarily ip+1�Ap and that �i1 , i2 , . . . , iM� corresponds
to a path along �. It is also interesting to consider more
substantial samples of �, for instance by considering
not only the adjacent edges, but also the interconnections
between the neighboring nodes of each node. Therefore,
the case above becomes (�i1 ,A1 ,E1� ; �i2 ,A2 ,E2� ,
. . . , �iM ,AM ,EM�), where Ep is the set containing the edges
between the nodes in Ap. Figure 1 illustrates a complex net-
work �a�, and respective examples of incompletely specified
networks obtained by random walks considering neighboring
nodes �b�, and the latter plus the edges between neighboring
nodes �c�.

Given an incompletely specified complex network G, a
natural question which arises is: to what accuracy the prop-
erties of the whole network � can be inferred from the avail-
able sampled information? Because the estimation of global
properties of � such as shortest paths and diameter consti-
tutes a bigger challenge to the moving agent, we concentrate
our attention on local topological properties, more specifi-
cally node degree and clustering coefficient of visited nodes.
The degree ki of node i and the clustering coefficient Ci of
that node are calculated as described in �3�.

Three types of random walks are considered in the present

work: �i� “traditional:” the next edge is chosen with uniform
probability among the adjacent edges; �ii� preferential to un-
tracked edges: the next edge is chosen among the untracked
adjacent edges and, in case no such edges exist, uniformly
among all the adjacent edges; and �iii� preferential to unvis-
ited nodes: the next edge is chosen among those adjacent
edges leading to unvisited nodes and, in case no such edges
exist, uniformly among all the adjacent edges. Note that the
plausibility of the preferential schemes depends on each
modeled system. For instance, the preference to untracked
nodes implies that the moving agent knows whether each

FIG. 1. A simple network �a� and two incompletely specified
networks obtained by a random walk considering neighboring
nodes and �b� the latter plus the edges between adjacent nodes �c�.
The gray nodes correspond to those sampled during the random
walk.

FIG. 2. The ratio of tracked
edges in terms of the steps t for
N=3 000 and N=10 000 consider-
ing the values of m as presented in
the legend, for the random �left�,
BA �middle�, and geographical
�right� network models.
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edge leads to a still unvisited node, though it may not know
exactly which one. It is interesting to note that the process of
sampling an existing network through a random walk can be
interpreted as a mechanism for “growing” a network.

III. NODE AND EDGE COVERAGE

First we consider the following three complex network
models: �a� random (Erdős-Rényi) networks; �b� Barabási-
Albert networks �BA�, built by using the preferential attach-
ment scheme described in �1�; and �c� a geographical net-
work model where nodes are distributed in a two-
dimensional space and the connection probability decays
with their distance. For all these network models, we fix the
following two parameters: the number of nodes N and the
number of edges for each node m, given thus an average
degree of �k�=2m. The random networks are specified by the

probability of connection of each pair of nodes, given by �
=2m / �N−1�. In the BA networks, new nodes with m edges
each are progressively incorporated into the network, with
each of the m edges being attached to previous nodes with
probability proportional to their respective node degrees; the
network starts with m0=m nodes. The geographical networks
are constructed by uniformly distributing the N nodes in a
two-dimensional square space of unitary length and linking
each pair of nodes with probability p=e−r/�, where r is the
geographical distance between the nodes; the parameter � is
adjusted for each pair of values N ,m to achieve the desired
average degree �k�=2m. Complex networks with number of
nodes N equal to 1 000,2 000, . . . ,10 000 and m
=3,4 , . . . ,8 have been considered. A total of 200 realizations
of each configuration, for the three types of random walks,
were simulated.

FIG. 3. The quarter-lives of the percentage of visited nodes �left column� and edges �right column� for the random �top�, BA �middle�,
and geographical �bottom� models, for traditional, preferential to untracked nodes, and preferential to unvisited edges random walk strate-
gies.
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Figure 2 illustrates the ratio of tracked edges in terms of
the walker steps t for N=3 000 and N=10 000 considering
m=3,4 , . . . ,8. It is clear from the obtained results that, as
expected, the higher the value of m, the smaller the ratio of
visited edges. Note that the increase of N also contributes to
less efficient coverage of the edges, as expressed by the re-
spective smaller ratios of visited edges obtained for N
=10 000. For large enough total number of steps, all curves
exhibited an almost linear initial region followed by satura-
tion near the full ratio of visited edges �i.e., 1�.

Figure 3�a� shows the “quarter-lives” h of the percentage
of visited nodes in terms of the network size N with respect
to the random network model with m=5, for the three types
of random walk. This measurement corresponds to the aver-
age number of steps at which the random walk has covered a
quarter of the total number of network nodes. Similar results
have been obtained for other critical fractions �e.g., half-life�.
Results for the BA model are shown in Fig. 3�c� and for the
geographical model in 3�e�. Note that, as m is fixed at 5, the
average degree �k� of all networks in this figure remains
equal to 10, being therefore constant with N, while the aver-
age number of edges grows as �E�=N�k� /2=5N. Interest-
ingly, linear dependence between the quarter-lives and N are
obtained in all cases. It is also clear from these results that
the most effective coverage of the nodes is obtained by the
random walk preferential to unvisited nodes, with the ran-
dom walk preferential to untracked edges presenting the next
best performance. The quarter-lives for the percentage of
tracked edges are shown in Figures 3�b�, 3�d�, and 3�f� re-
spectively to random, BA and geographical network models.
The best ratios of covered edges were obtained for the ran-
dom walk preferential to untracked edges, with the random
walk preferential to unvisited nodes presenting the next best
performance. The traditional random walk resulted the least
efficient strategy in all situations considered in this work.
Note that the three types of random walks have similar edge
coverage efficiencies on the three network models. For node
coverage, there are slight differences from one network
model to the other, with faster coverage in the random net-

work model and slower coverage in the geographical model.
The model has greater influence on node coverage for the
traditional random walk, with almost no influence for the
random walk preferential to new nodes.

Further characterization of the dynamics of node coverage
can be obtained by considering the scaling of the slopes of
the curves of ratios of visited nodes in terms of several val-
ues of m. Remarkably, for random walks preferential to new
nodes, the slopes obtained by least mean square fitting were
verified not to vary significantly with m, being fixed at about

FIG. 4. Slopes of the ratios of visited nodes obtained for tradi-
tional random walks for m=3,4 , . . . ,8 considering random, BA,
and geographical network models �in logarithmic scale�. Error bars
show the asymptotic standard error of the regression.

FIG. 5. Curve �actually a kind of random walk� defined by the
estimations (k�t� ,C�t�), through traditional random walk, of the av-
erage node degree k�t� and average clustering coefficient C�t� in a
random �a�, BA �b�, and geographical �c� network with N=10 000
and m=5.
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0.25 for the three network models. When preference is given
for new links, the slopes are about 0.25 for the random
model and 0.32 for the BA and geographical models, with
slightly larger variation in the latter model. Figure 4 shows
the log-log representation of the slopes in terms of m ob-
tained for the traditional random walk for m=3,4 , . . . ,8. The
error bars �smaller than the size of the symbols� show the
value found for the asymptotic standard error of the linear
regression �31�. It is clear from this figure that, though the
slopes tend to scale in similar fashion for the random and BA
networks, node coverage is faster for the former. Geographi-

cal networks, on the other hand, have a markedly distinct
behavior, with slower coverage and a faster decrease of the
slopes with connectivity.

IV. ESTIMATION OF AVERAGE NODE DEGREE AND
CLUSTERING COEFFICIENT

So far we have investigated the dynamics of node and
edge coverage in random, BA and geographical models
while considering the three types of random walks. In prac-
tice, as the size of the network being explored through the

FIG. 6. Average degree �a�,
�b�, and �c�; and average cluster-
ing coefficient �d�, �e�, and �f�; for
the Erdős-Rényi �a�, and �d�;
Barabási-Albert �b�, and �e�, and
geographical �c�, and �f� network
models. The values shown are ra-
tios from averages computed in
the random walks �after 50 000
steps� to the real network values.
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random walks is typically unknown, the number of visited
nodes or tracked edges by themselves provide little informa-
tion about the topological properties or nature of the net-
works. The remainder of the present work addresses the es-
timation of measurements of the local connectivity of
networks, namely the average node degree, average cluster-
ing coefficient, and degree distribution obtained along the
random walks.

For generality’s sake, the estimations for average degree
and average clustering coefficient are henceforth presented in
relative terms, i.e., as the ratio between the current estima-
tion �e.g., k�t�, where t is the walker step� and the real value
�e.g., �k��. Figure 5 illustrates the curve defined by the esti-
mations (k�t� ,C�t�) obtained by traditional random walks
along network of the three models with N=10 000 and m
=5. Interestingly, these curves are indeed a kind of random
walk with convergent limit. Such curves have been found to
converge to limiting ratios �kL ,CL� which can or not corre-
spond to the ideal ratios �1, 1�. In the case of the curve for
the BA model in Fig. 5�b�, we have �kL=2.87, CL=0.84�, i.e.
the average node degree has been overestimated while the
average clustering coefficient has been underestimated.

Through extensive simulations, reported in Fig. 6, we
have observed that the estimations for the traditional random
walk in random and geographical networks are independent
of N, with slight overestimation of the average degree, but
with the accuracy increasing with m, while better accuracies
were achieved for the random model. For BA networks, the
average degree is consistently overestimated, while the clus-
tering coefficient is underestimated; the estimation accura-
cies decrease with N, but increase with m. The substantial
biases implied by the random walk over BA networks is a
direct consequence of the larger variability of node degree
exhibited by this model �see also �12,28��. Therefore, nodes
with higher degree will tend to be visited more frequently
�33�, implying overestimation of the average node degree
and a slight bias on the clustering coefficient.

Further results on the estimation of the node degree dis-
tribution while proceeding along the path of a traditional
random walk are shown in Fig. 7, which presents the degree
distribution after 50 000 steps on networks of 10 000 nodes,
as compared with the real degree distribution. It can be seen
that the degree distributions estimated along the walk for the
random and geographical networks are similar to the real
distributions, with a slight bias toward higher degrees. On
the other hand, for BA networks the slope of the power law
changes.

Provided the moving agent can store all the information
obtained from the network as it is being explored, yielding a
partial map of the so far sampled structure, it is possible to
obtain more accurate �i.e., unbiased� estimates of the average
node degree and clustering coefficient during any of the con-
sidered random walks in any type of networks by performing
the measurements without node repetition. However, an
agent moving along a BA network without resource to such
an up-to-date partial map will have to rely on averages of the
measurements calculated at each step. This will cause the
impression of inhabiting a network much more complex �in
the sense of having higher average node degree� than it is

indeed the case. Going back to the motivation at the begin-
ning of this paper, it is difficult to avoid speculating whether
our impression of living in a world with so many possibili-
ties and complexities could not be in some way related to the
above characterized effects.

V. CONCLUDING REMARKS

Due to the fact that most real complex networks are only
partially available to us as a consequence of their sheer size

FIG. 7. Degree distributions for the random �a�, BA �b�, and
geographical �c� networks, computed for the real network and for
the nodes on the walk �after 50 000 steps�. Note that the distribution
of the BA case is shown in logarithmic axes.
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and complexity, it becomes of critical importance to under-
stand how well these structures can be investigated by using
sampling strategies such as different types of random walks.
The present work has addressed this issue considering ran-
dom, BA, and geographical network models with varying
connectivity and sizes being sampled by three types of ran-
dom walks. A series of results have been obtained which bear
several theoretical and practical implications. Particularly
surprising is the fact that all networks are similarly acces-
sible as far as node and edge exploration is concerned. Ac-
tually, random networks tend to have their nodes and edges
explored in a slightly more effective way, followed by the
BA and geographical cases. Also important is the character-
ization of linear scaling with the network size of the quarter-
life of the ratio of covered nodes and edges, and the identi-
fication of substantial biases in estimations of the average
node degree and clustering coefficient in several situations.
In particular, in the case of the BA model the average node
degree tends to be estimated as being over twice as much as
the real value, in accordance with previous related investiga-
tions �12,28�. In addition, our experiments allowed the iden-
tification of the fact that the node degree overestimation
tends to increase with N and decrease with the average con-
nectivity �m�. Regarding the three different exploratory

mechanisms, we found that the traditional approach �uni-
formly random selection of next node� resulted in the less
efficient alternative. In the case of the node coverage, the
strategy priorizing new nodes resulted in being the most ef-
fective. An analogue result was obtained for the case of edge
coverage. The problem of recovering the degree distribution
while performing the random walks was also considered and
experimentally investigated. The estimated distribution was
found to be similar to the real one in the cases of the random
and geographical models. However, rather distinct slopes
�considering log-log axes� were obtained for BA networks.
Additional insights about the nontrivial dynamics of complex
network exploration through random walks can be achieved
by considering more global topological measurements such
as shortest paths, diameters, hierarchical measurements, and
betweenness centrality.
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